Abstract

Collective behavior of an ensemble of directly or indirectly coupled oscillators can be a function of population density. Experiments using autonomous mercury beating heart (MBH) oscillators coupled through their surroundings are employed, to study the existence of quorum-like (population dependent) phenomena. Two coupling mechanisms are used, namely, static and dynamic coupling. For the static coupling scheme, the transitions of a subset of the coupled oscillators occur from active (oscillatory) to inactive (quiescent) state and vice versa. A continuous variation of collective dynamics was observed as the population of the oscillators increased. For the dynamic coupling scheme, the time for which the coupled oscillators are active changes sharply as the population increases beyond a certain threshold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.