Abstract

We present a systematic study of the oscillator strength of the positively charged excitons (X +) in Cd 1− x Mn x Te quantum wells. CW-absorption and time-resolved photoluminescence measurements were combined as two approaches for the determination of the oscillator strength. By varying (in a small magnetic field) the spin subband hole distribution at constant total concentration, we observe an increase of the oscillator strength in absorption, proportional to the hole concentration in one spin subband (the one which allows the X + formation). The measurements done for different total hole concentrations show an important decrease of the X + oscillator strength per carrier when increasing the total concentration. On the contrary the radiative lifetime, measured in time-resolved PL experiment, is found to be constant over the whole range of hole gas concentrations, and equal to the value which we deduce from transmission in the limit of vanishing hole concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.