Abstract
High level ab initio calculations, using multireference configuration interaction (MRCI) techniques, have been carried out to investigate the spectroscopic properties of the singlet A 1Piu<--X 1Sigmag+ Phillips, the triplet d 3Pig<--a 3Sigmau Swan, the b 3Sigmag-<--a 3Piu Ballik-Ramsay, and the d 3Pig<--c 3Sigmau+ transitions of C2. The MRCI expansions are based on full-valence complete active space self-consistent-field reference states and utilize the aug-cc-pV6Z basis set to resolve valence electron correlation. Core and core-valence correlations and scalar relativistic energy corrections were also incorporated in the computed potential energy surfaces. Nonadiabatic and spin-orbit effects were explored and found to be of negligible importance in the calculations. Harmonic frequencies and rotational constants are typically within 0.1% of experiment. The calculated radiative lifetimes compare very well with the available experimental data. Oscillator strengths are reported for all systems: fv'v", where 0<or=v<or=5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.