Abstract

A model for the oscillation of gas bubbles encapsulated in a thin shell has been developed. The model depends on viscous and elastic properties of the shell, described by thickness, shear modulus, and shear viscosity. This theory was used to describe an experimental ultrasound contrast agent from Nycomed, composed of air bubbles encapsulated in a polymer shell. Theoretical calculations were compared with measurements of acoustic attenuation at amplitudes where bubble oscillations are linear. A good fit between measured and calculated results was obtained. The results were used to estimate the viscoelastic properties of the shell material. The shell shear modulus was estimated to between 10.6 and 12.9 MPa, the shell viscosity was estimated to between 0.39 and 0.49 Pas. The shell thickness was 5% of the particle radius. These results imply that the particles are around 20 times more rigid than free air bubbles, and that the oscillations are heavily damped, corresponding to Q-values around 1. We conclude that the shell strongly alters the acoustic behavior of the bubbles: The stiffness and viscosity of the particles are mainly determined by the encapsulating shell, not by the air inside.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.