Abstract

Electrical activity in non-neuronal cells can be induced by altering the membrane potential and eliciting action potentials. For example, hormones, nutrients and neurotransmitters act on excitable endocrine cells. In an attempt to correlate such electrical activity with regulation of cell activation, we report here direct measurements of cytosolic free Ca2+ changes coincident with action potentials. This was achieved by the powerful and novel combination of two complex techniques, the patch clamp and microfluorimetry using fura 2 methodology. Changes in intracellular calcium concentration were monitored in single cells of the pituitary line GH3B6. We show that a single action potential leads to a marked transient increase in cytosolic free calcium. The size of these short-lived maxima is sufficient to evoke secretory activity. The striking kinetic features of these transients enabled us to identify oscillations in intracellular calcium concentration in unperturbed cells resulting from spontaneous action potentials, and hence provide an explanation for basal secretory activity. Somatostatin, an inhibitor of pituitary function, abolishes the spontaneous spiking of free cytosolic Ca2+ which may explain its inhibitory effect on basal prolactin secretion. Our data therefore demonstrate that electrical activity can stimulate Ca2+-dependent functions in excitable non-neuronal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.