Abstract

The mechanism of cycle length oscillation and its role in spontaneous termination of reentry was studied in an in vitro preparation of canine atrial tissue surrounding the tricuspid orifice. Reentry occurred around a fixed path with incomplete recovery of excitability. Among 18 experiments, there was complete concordance between the occurrence of spontaneous cycle length oscillation and spontaneous terminations; both were observed in 10 experiments and neither in the other eight (p less than 0.001). Local changes in conduction during oscillations resulted from the dependence of both conduction velocity and action potential duration on the preceding local diastolic interval. Interval-dependent changes in action potential duration contributed to the oscillation by altering the next diastolic interval. Because of changes in action potential duration, changes in cycle length were poorly correlated with changes in diastolic interval and, therefore, with local conduction velocity. Complex oscillations resulted from variations in conduction time at multiple sites in the circuit. Oscillations caused most spontaneous terminations. The critical event was an exceptionally long diastolic interval preceding the next-to-last cycle that accelerated local conduction (which tended to shorten the last cycle) and prolonged action potential duration and refractoriness at the site of block. Ninety-two of 99 recordings of spontaneous termination showed evidence of oscillation of conduction and refractoriness causing block.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.