Abstract

The effect of rotation on the frequencies of oscillations of a liquid drop is investigated. It is assumed that the drop is imbedded in a fluid of the same or different density and that a constant surface tension acts on the interface. Rotation influences the oscillations through the Coriolis force and through the centrifugal distortion of the drop. For non-axisymmetric oscillations only the Coriolis force is important in first approximation and causes the expected splitting of the frequency for the two modes differing in their sign of circular polarization with respect to the axis of rotation. In the case of axisymmetric oscillations the centrifugal distortion and the Coriolis force combine to increase the frequency whenever the density ρi of the drop exceeds the density of ρ° of the surrounding fluid. For ρi < ρ° a decrease of the frequency of oscillation is possible for some modes of higher degree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call