Abstract

Different regimes are usually observed for fluid migration through an immersed granular layer. In this work, we report a puzzling behavior when injecting water at a constant flow rate through a nozzle at the bottom of an immersed granular layer in a Hele-Shaw cell. In a given range of parameters (granular layer height and fluid flow rate) the granular bed is not only fluidized, but the particle-laden jet also exhibits periodic oscillations. The frequency and amplitude of the oscillations are quantified. The Strouhal number displays a power-law behavior as a function of a nondimensional parameter, J, defined as the ratio between the jet velocity at the initial granular bed height and the inertial particle velocity. Fluid-particle coupling is responsible for the jet oscillations. This mechanism could be at the origin of the cyclic behavior of pockmarks and mud volcanoes in sedimentary basins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.