Abstract

The problem of standing waves in a circular cylindrical vessel with an elevation on the bottom is formulated and numerically solved in the long wave approximation using an accelerated convergence algorithm. As a result of the calculations, the natural frequency of the fundamental wave mode is determined with a high accuracy. To compare the theoretical results, new experimental data on the excitation of standing surface gravity waves in a circular cylindrical vessel with parabolic and conical elevations at the bottom are presented. It is shown that the calculated and measured natural frequencies of the fundamental wave mode in vessels with the profiled bottom coincide between themselves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.