Abstract
Multicellular tumour spheroids (MTS) provide an important tool for study of the microscopic properties of solid tumours and their responses to therapy. Thus, observation of large-scale volume oscillations in MTS, reported several years ago by two independent groups (1,2), in our opinion represent a remarkable discovery, particularly if this could promote careful investigation of the possible occurrence of volume oscillations of tumours 'in vivo'. Because of high background noise, quantitative analysis of properties of observed oscillations has not been possible in previous studies. Such an analysis can be now performed, thanks to a recently proposed approach, based on formalism of phenomenological universalities (PUN). Results have provided unambiguous confirmation of the existence of MTS volume oscillations, and quantitative evaluation of their properties, for two tumour cell lines. Proof is based not only on quality of fitting of the experimental datasets, but also on determination of well-defined values of frequency and amplitude of the oscillations for each line investigated, which would not be consistent with random fluctuation. Biological mechanisms, which can be directly responsible for observed oscillations, are proposed, which relates also to recent work on related topics. Further investigations, both at experimental and at modelling levels, are also suggested. Finally, from a methodological point of view, results obtained represent further confirmation of applicability and usefulness of the PUN approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.