Abstract

In Alzheimer's disease (AD) cerebrovascular function is at risk. Transcranial Doppler, near-infrared spectroscopy, and photoplethysmography are noninvasive methods to continuously measure changes in cerebral blood flow velocity (CBFV), cerebral cortical oxygenated hemoglobin (O(2)Hb), and blood pressure (BP). In 21 patients with mild to moderate AD and 20 age-matched controls, we investigated how oscillations in cerebral blood flow velocity (CBFV) and O(2)Hb are associated with spontaneous and induced oscillations in blood pressure (BP) at the very low (VLF = 0.05 Hz) and low frequencies (LF = 0.1 Hz). We applied spectral and transfer function analysis to quantify dynamic cerebral autoregulation and brain tissue oxygenation. In AD, cerebrovascular resistance was substantially higher (34%, AD vs. control: Δ = 0.69 (0.25) mm Hg/cm/second, p = 0.012) and the transmission of very low frequency (VLF) cerebral blood flow (CBF) oscillations into O(2)Hb differed, with increased phase lag and gain (Δ phase 0.32 [0.15] rad; Δ gain 0.049 [0.014] μmol/cm/second, p both < 0.05). The altered transfer of CBF to cortical oxygenation in AD indicates that properties of the cerebral microvasculature are changed in this disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.