Abstract

Solar Optical Telescope onboard Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 31 Aug 2013. We analysed a 2-hour \ion{Ca}{2} H emission intensity data set and detected strong 5-min oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that 5-min oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from the underneath. The slit taken along the central axis of the wide light bridge exhibits a standing wave feature. However, at the centre of the wide bridge, the 5-min oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves originated at the bridge sides. Thus, the 5-min oscillations on the wide bridge also resemble the properties of running penumbral waves. The 5-min oscillations are suppressed in the umbra, while the 3-min oscillations occupy all three cores of the sunspot's umbra, separated by the LBs. The 3-min oscillations were found to be in phase at both sides of the LBs. It may indicate that either LBs do not affect umbral oscillations, or umbral oscillations at different umbral cores share the same source. Also, it indicates that LBs are rather shallow objects situated in the upper part of the umbra. We found that umbral flashes follow the life cycles of umbral oscillations with much larger amplitudes. They cannot propagate across LBs. Umbral flashes dominate the 3-min oscillation power within each core, however, they do not disrupt the phase of umbral oscillation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.