Abstract
Abstract In this work, we study parametric excitations in an elongated cigar-shaped BEC in a combined harmonic trap and a time dependent optical lattice by using numerical techniques. We show that there exists a relative competition between the harmonic trap which tries to spatially localize the BEC and the time varying optical lattice which tries to delocalize the BEC. This competition gives rise to parametric excitations (oscillations of the BEC width). Regular oscillations disappear when one of the competing factors, i.e. the strength of harmonic trap or the strength of optical lattice, dominates. Parametric instabilities (chaotic dynamics) arise for large variations in the strength of the optical lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.