Abstract

As the penetration of renewable energy increases year by year, the risk of high-frequency oscillation instability increases when a three-phase, four-wire split capacitor inverter (TFSCI) is connected to the grid with complementary capacitors in weak grids. Compared to the three-phase, three-wire inverter, the TFSCI has an additional zero-sequence current loop. To improve the accuracy of the modeling and stability analysis, the effect of the zero-sequence loop needs to be considered in the impedance-based stability analysis. Therefore, a correlation model considering multi-perturbation variables is first established, based on which the inverter positive, negative, and zero sequence admittance models are derived, solving the difficult problem of impedance modeling under small perturbations. Secondly, an admittance remodeling strategy based on a negative third-order differential element and a second-order generalized integrator (SOGI) damping controller is proposed, which can improve the stability of positive, negative, and zero-sequence systems simultaneously. Finally, the effectiveness of the oscillation suppression strategy is verified by simulation and experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.