Abstract

A nanoresonator based on a graphene layer is investigated as an electromechanical oscillatory system. Mechanical oscillations are excited in it by a high-frequency alternating electric field. A nanoresonator is considered as a capacitor with kinematically varying capacity of the determined transverse deformation of the graphene layer as one of its plates. In the case of small ratios of energy accumulated in a capacitor to the amplitude of energy of mechanical oscillations and the time constant of the capacitor charge to the period of free oscillations, excitation of both common and parametric resonances is possible. It is shown that upon decreasing the external frequency lower than the half-frequency of free oscillations, the cessation of forced oscillations of the nanolayer is observed. This makes it possible to determine more reliably the variations in the intrinsic frequency of the nanoresonator upon deposition of a nanoparticle on it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.