Abstract

The anode-supported solid oxide fuel cell (SOFC) with low-porosity anode structure is fabricated and the electrochemical characteristics are investigated. The electrochemical characterization of the cell shows a periodic oscillation phenomenon of the cell voltage under the constant current density operation. The low-porosity anode structure results in the decrease in the effective diffusion coefficient and the accumulation of water vapor. The cell voltage oscillation is mainly caused by the concentration polarization as well as the boundary migration of the reaction zone. The profound influence on the concentration polarization can be observed when the cell test is executed with operation condition of higher current density, lower hydrogen concentration, and lower hydrogen flow rate in the anode side.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call