Abstract
1. Pancreatic beta-cells oscillate synchronously when grouped in islets. Coupling seems essential to maintain this oscillatory behaviour, as isolated cells are unable to oscillate. This allows the islet to be used as a model system for studying the role of coupling in the generation of oscillatory patterns. 2. Pairs of beta-cells were intracellularly recorded in islets. beta-Cells oscillated synchronously. Propagated voltage deflections were observed as a function of glucose concentration and of the distance between the recording electrodes. Space constants were smaller in the silent than in the active phases, suggesting a higher intercellular connection in the active phases. 3. Coupling coefficients and estimated coupling conductances were larger in the active than in the silent phases. 4. Coupling coefficients and coupling conductances changed dynamically and in phase with the membrane potential oscillations, pointing to an active modulation of the gap junctions. 5. We hypothesize a role for coupling in the generation of the oscillatory events, providing different levels of permeability dependent on the state of conductance during the oscillatory phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.