Abstract

Amorphous MnxGe1−x:H ferromagnetic semiconductor films prepared in mixed Ar with 20% H2 by magnetron co-sputtering show global ferromagnetism with positive coercivity at low temperatures. With increasing temperature, the coercivity of MnxGe1−x:H films first changes from positive to negative, and then back to positive again, which was not found in the corresponding MnxGe1−x and other ferromagnetic semiconductors before. For Mn0.4Ge0.6:H film, the inverted Hall loop is also observed at 30 K, which is consistent with the negative coercivity. The negative coercivity is explained by the antiferromagnetic exchange coupling between the H-rich ferromagnetic regions separated by the H-poor non-ferromagnetic spacers. Hydrogenation is a useful method to tune the magnetic properties of MnxGe1−x films for the application in spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call