Abstract

Neutral titanium oxide clusters of up to 1 nm in diameter (TiO2)n, with n < 10, are produced in a laser vaporization source and subsequently ionized by a sequence of femtosecond laser pulses. Using a 400 nm pump and 800 nm probe lasers, the excited state lifetimes of neutral (TiO2)n clusters are measured. All clusters exhibit a rapid relaxation lifetime of ∼35 fs, followed by a sub-picosecond lifetime that we attribute to carrier recombination. The excited state lifetimes oscillate with size, with even-numbered clusters possessing longer lifetimes. Density functional theory calculations show the excited state lifetimes are correlated with charge carrier localization or polaron-like formation in the excited states of neutral clusters. Thus, structural rigidity is suggested as a feature for extending excited state lifetimes in titania materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.