Abstract

For a coupled unidirectional photorefractive ring resonator (UPRR), the oscillation characteristics have been studied in details in terms of the photoconductive and dielectric constant of the photorefractive (PR) crystals under the assumption of the plane-wave approximation based on non-degenerate two-wave mixing in the photorefractive materials. It has been found that the steady oscillations are possible when the two resonators oscillate independently. Using the plane-wave approximation and steady state oscillation conditions, the effect of the frequency detuning, photoconductivity and dielectric constant of the PR crystals on the relative intensity and frequency of oscillation of the secondary resonator in the coupled UPRR have been studied. It has been found that the relative oscillation frequency of the secondary resonator could be enhanced by selecting PR crystal A of higher absorption strength relative to PR crystal B and the higher photoconductivity of the crystals B as compared to that of the crystal A. Due to the non-reciprocal energy transfer between the oscillating beams and the additional PR phase-shift in the PR crystals A and B, the magnitude of the relative oscillation frequency of the secondary resonator could be controlled by the absorption strength, dielectric constant and photoconductivity of the two crystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call