Abstract
Space-clamped squid axons treated with low calcium and computed Hodgkin-Huxley (HH) axons were stimulated by steps of superthreshold current from 101 to 400% of the rheobasic value over a temperature range of 5-27 degrees C. The natural frequency of sustained repetitive firing of real and computed axons depended weakly upon stimulus intensity and strongly upon temperature, with a Q(10) of 2.7 (experimental) and 2.6 (computed). For real axons, but not the computed axon, the intervals between the first two spikes were shorter than between subsequent spikes. Constant spike frequencies from 75 Hz at low intensities and temperatures to 330 Hz at high intensities and temperatures were soon achieved. Subthreshold and superthreshold responses were sometimes intermixed in a train of responses from a real axon responding to a constant step of current, but not predicted by HH. The time interval following a spike was always longer than that following a subthreshold oscillation in slightly decalcified real axons, as Huxley and FitzHugh also found for computed axons. There was a bias toward spikes at the beginning of the train and toward subthreshold responses later on. Some repeated patterns were found, every second, third, or fourth response being a spike. Neither the HH equations nor the computed or experimental threshold behaviors show a critical temperature to support a membrane phase transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.