Abstract

Coupled shape oscillations and translational motion of an incompressible gas bubble in a vibrating liquid container is studied numerically. The bubble oscillation characteristics are mapped based on the bubble Bond number (Bo) and the ratio of the vibration amplitude of the container to the bubble diameter (A/D). At small Bo and A/D, the bubble oscillation is found to be linear with small amplitudes, and at large Bo and A/D, it is nonlinear and chaotic. This chaotic bubble oscillation is similar to those observed in two coupled nonlinear systems, here being the gas inside the bubble and its surrounding liquid. Further increases in the forcing, results in the bubble breakup due to large liquid inertia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.