Abstract
New methods of manufacturing and assembly, enabled through robotic fabrication, push the boundaries of the conventional in architecture and construction, when coupled with advanced digital design and simulation. This paper presents a novel method for digital production of bespoke ceramic assemblies for spatial acoustic modulation, demonstrating a hybrid robotic process combining robotic oscillating wire cutting (ROWC) of wet clay bricks and adaptive pick and place (APnP) production of bespoke brick panel assemblies. These processes are carried out within the framework of a deployable robot cell that can be shipped to a jobsite where complex fabrication and assembly can be performed in situ. The research bridges the gap between serialized and bespoke production of architectural elements, by minimally disrupting existing production chains as a viable way forward to integrate digital technologies into existing manufacturing and construction processes. The proposed methods are demonstrated through a collaboration with brick producer Strojer Tegl leading to the manufacturing and assembly of a full-scale acoustic demonstrator of 9 × 4 m, comprises 2200 bricks with 14 shape variants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.