Abstract

Growing Neutrino quintessence describes a form of dynamical dark energy that could explain why dark energy dominates the universe only in recent cosmological times. This scenario predicts the formation of large scale neutrino lumps which could allow for observational tests. We perform for the first time N-body simulations of the nonlinear growth of structures for cold dark matter and neutrino fluids in the context of Growing Neutrino cosmologies. Our analysis shows a pulsation - increase and subsequent decrease - of the neutrino density contrast. This could lead to interesting observational signatures, as an enhanced bulk flow in a situation where the dark matter density contrast only differs very mildly from the standard LCDM scenario. We also determine for the first time the statistical distribution of neutrino lumps as a function of mass at different redshifts. Such determination provides an essential ingredient for a realistic estimate of the observational signatures of Growing Neutrino cosmologies. Due to a breakdown of the non-relativistic Newtonian approximation our results are limited to redshifts z > 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.