Abstract
Current haptic devices are usually designed to provide one type of force feedback; however, most VR scenarios require versatile force feedback, which may require the integration of different devices to provide various types of forces. In addition, besides the main haptic effects caused by the forces, multiple types of oscillation may also commonly accompany them, which are crucial for improving VR realism and immersion. Therefore, we simulate versatile force feedback by rendering the corresponding types of oscillation as the effects caused by those forces. We take inertia and impact forces as examples in this paper, and achieve versatility using the proposed device, OsciHead, on a head-mounted display (HMD), instead of integrating different devices. By controlling elastic bands' elasticity and stored power, OsciHead uses two rotatable oscillators on both sides of the HMD, in order to render various multilevel and multidimensional oscillation feedback in 2D translation and 2D rotation directions on a head. In an exploratory study, we explored different scenarios in which multiple types of oscillation could be simulated by OsciHead. We then observed oscillation level distinguishability in two just-noticeable difference (JND) studies, and evaluated the oscillation type recognition rates in a recognition study. Based on the results, we performed a VR study, which verified that the inertia and impact feedback simulated by OsciHead enhances realism and achieves versatility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Human-Computer Interaction
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.