Abstract
Humidity-sensitive genic male sterility (HGMS) is a novel type of environment-sensitive male sterility (EGMS) which plants are male sterile at low humidity and male fertile at high humidity. Previous studies have revealed that OsCER1 contributes to very-long-chain (VLC) alkanes biosynthesis in rice (Oryza sativa L.). Here, applying the CRISPR/Cas9 technique, we obtained two independent OsCER1 knockout lines (OsCER1Cas). Both OsCER1Cas lines exhibited HGMS. Mutant pollen showed defects in adhesion and germination on stigmas at low humidity, whereas high humidity enhanced the pollen germination rate. Transmission electron microscopy (TEM) observations of mutant pollen revealed abnormal tryphine structure, potentially representing the basis of HGMS. Furthermore, co-pollination with mixed OsCER1Cas mutant and maize (Zea mays L.) pollen could rescue the fertility of the mutant, thereby establishing the key role of tryphine in germination on stigmas. OsCER1 knockout might affect VLC alkane metabolism and therefore alter the lipid composition of tryphine. It could lead to the defects in pollen grain adhesion, hydration and germination, resulting in HGMS. This work identified the mechanism of HGMS induced by VLC alkanes in rice and the generality of tryphine in different species of Gramineae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.