Abstract

Excited-state quantum chemical calculations usually report excitation energies and oscillator strengths, f, for each electronic transition. On the other hand, UV-visible spectrophotometric experiments measure energy-dependent molar extinction/attenuation coefficients, ε(v), that give absorption band line shapes when plotted. ε(v) and f are related, but this relation is complicated by broadening and solvation effects. We fitted and integrated 100 experimental UV-visible spectra to obtain 164 fexp values for absorption bands appearing in these spectra. The 100 UV-visible spectra belong to solvated organic molecules ranging in size from 6-34 atoms. We estimated uncertainties in the fitting to indicate confidence level in the reported fexp values. The corresponding computed oscillator strengths (fcomp) were obtained with time-dependent density functional theory and a polarizable continuum solvent model. By expressing experimental and computed absorption strengths using a common quantity, we directly compared fcomp and fexp. Although fcomp and fexp are well correlated (linear regression R2 = 0.921), fcomp in most cases overestimated fexp (regression slope = 1.34). The agreement between absolute fcomp and fexp values was substantially improved by accounting for a solvent refractive index factor, as suggested in some derivations in the literature. The 100 digitized UV-visible spectra are included as plain text files in the Supporting Information to aid in benchmarking computational or machine learning methods that aim to simulate realistic UV-visible absorption spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call