Abstract
Abstract BACKGROUND Glioblastoma (GB) is the most common primary brain tumor which is characterized by low immunogenicity of tumor cells and prevalent immunosuppression in the tumor microenvironment (TME). Since expression of PD-L1 on GB cells has been described, immunotherapy with checkpoint inhibitors (CIs) may be a promising approach for GB treatment. However, systemic administration of CIs bears the risk of autoimmune-like side effects, while the intratumoral drug concentration reached may not be sufficient. METHODS We studied delivery of CIs through targeted Adeno-associated viral vectors (AAVs) encoding an anti PD-1 immunoadhesin (aPD-1) as a novel approach towards local immunotherapy in the syngeneic GL261-HER2 glioma model. Tumor cell-specific delivery was achieved by targeting HER2 via a specific designed ankyrin repeat protein (DARPin). We investigated the effects of this strategy alone and in combination with local injection of HER2-specific CAR-NK cells (NK-92/5.28.z), which have already shown efficacy in preclinical GB models and are currently under investigation in the CAR2BRAIN phase I clinical trial. Furthermore, aPD-1 functionality and cellular response to viral transduction as well as compatibility of both therapy approaches has been evaluated in various in vitro models. RESULTS HER2-AAV transduction efficacy of GB cells correlated with HER2 expression level, while target cells did not show anti-viral responses upon transduction. After transduction with aPD-1 HER2-AAVs, aPD-1 immunoadhesin was secreted in a time-dependent manner, bound its target on PD-1-expressing cells and was able to re-activate T-cells due to PD-1 blockade. AAV-transduction did not interfere with CAR-NK cell mediated tumor cell lysis. Biodistribution studies in mice revealed the presence of aPD-1 up to 10 days after a single HER2-AAV injection. In subcutaneous GL261-HER2 tumors, local treatment with HER2-AAVaPD-1 or HER2-AAVIgG-Fc+ NK-92/5.28.z therapy had no significant effect, whereas combination therapy profoundly delayed tumor growth. CONCLUSIONS Local therapy with aPD-1 encoding HER2-AAVs in combination with NK-92/5.28.z cells is a promising novel strategy for GB immunotherapy with the potential to enhance efficacy and reduce side effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.