Abstract

Abstract BACKGROUND The RB-CDK4/6 and mTOR signaling pathways are deregulated in high-grade glioma (HGG) and mTOR activation is a potential mechanism of resistance to CDK4/6 inhibition. This study evaluates the tumor pharmacokinetics (PK) and tumor pharmacodynamics (PD) of combined CDK4/6 and mTOR inhibition in recurrent HGG patients. MATERIAL AND METHODS Eligible patients had recurrent HGG with (1) intact RB expression, (2) CDKN2A/B deletion or CDK4/6 amplification, and (3) PTEN loss or PIK3CA mutations. Six patients received five days of presurgical ribociclib (400mg QD) plus everolimus (2.5mg QD) and then underwent tumor resection at 2, 8 or 24 hours following the last dose. Five subsequent dose-escalation cohorts each enrolled three additional patients, reaching a maximum dose-level of ribociclib (600mg QD) plus everolimus (60mg QW). Tumor tissue (gadolinium [Gd]-enhancing and nonenhancing regions), CSF, and plasma were collected. Total and unbound drug concentrations were determined using validated LC-MS/MS methods. Tumor PD effects, including RB and S6 phosphorylation, were compared to matched archival tissue. A PK ‘trigger’ (i.e., unbound concentration > 5-fold biochemical IC50) and a PD ‘trigger’ (>30% decrease in both pRB and pS6) were set for each drug. Gd-nonenhancing tissue exhibiting both PK and PD effects in excess of these thresholds qualified patients for postoperative combination therapy. RESULTS 21 patients with WHO Grade III (n=2) and WHO Grade IV (n=19) gliomas were enrolled. No dose-limiting toxicities were observed. Following presurgical drug, all patients demonstrated marked decrease in Gd-enhancement on preoperative MRI. In Gd-nonenhancing tumor regions, the median unbound concentration of ribociclib was 719 nM (i.e., > 5-fold biochemical IC50 for CDK4/6 inhibition), whereas the unbound everolimus tumor concentrations in all patients were below the lower limit of quantitation (i.e., < 0.2 nM). The median total concentrations of everolimus in tumors at dose-levels 0 to 5 were 2.9, 8.8, 10.3, 5.0, 15.7, and 13.7 nM, respectively. Across all dose-levels, 62% (13/21) and 22% (5/21) of tumors demonstrated decreased tumor RB and S6 phosphorylation, respectively. Tumor proliferation (MIB-1) was decreased in 67% (14/21) of all patients. CONCLUSION In adult HGG, ribociclib achieves pharmacologically-relevant concentrations in Gd-nonenhancing tumor, consistent with the observed tumor PD effects. Everolimus exhibits very limited penetration into human glioma tissue. Our study supports further development of ribociclib, but not everolimus, for the treatment of glioma patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call