Abstract
Osmium concentrations and isotopic signatures were measured in 28 primarily Holocene basalts (22 of which have been analyzed for Sr–Nd–Pb isotope composition), two carbonatites and two mantle xenoliths from the Canary Islands, Selvagen Grande and Madeira in the eastern North Atlantic. 187Os/188Os ratios in the basalts range from 0.129 to 0.183. The Os isotope systematics indicate that the basalts fall into three petrogenetic groups: (1) a ‘radiogenic’ group with high 187Os/188Os from 0.152 to 0.183; (2) an ‘unradiogenic’ group with low 187Os/188Os from 0.129 to 0.138; (3) an ‘intermediate’ group with 187Os/188Os between 0.139 and 0.151. The Os isotope systematics of the radiogenic group samples are consistent with minor contamination of the basalts by marine sediment. All samples in the unradiogenic group contain mantle xenoliths, and the unradiogenic Os can be explained by bulk assimilation of ≤ 5% mantle peridotite in the form of disaggregated xenoliths. The radiogenic and unradiogenic groups are also characterized by higher 87Sr/86Sr and 208Pb/204Pb but lower 143Nd/144Nd than samples with similar 206Pb/204Pb from the intermediate group, which is interpreted to reflect interaction of plume magmas with the lithospheric mantle. The intermediate group samples are believed to represent the isotopic signature of the mantle plume. The Os isotopic composition of the Canary plume is among the most radiogenic found in ocean island basalts, comparable with the endmember HIMU islands Mangaia and Tubuaii, but at significantly lower 206Pb/204Pb. The radiogenic Os and moderate 206Pb/204Pb signature of the Canary plume is consistent with a plume which contains 25–35% of relatively young (∼1.2 Ga) recycled oceanic crust. Variable degree of mixing of the Canary Island plume source with shallow depleted asthenosphere containing a component of Paleozoic oceanic crust produces the limited range in Os isotopic signatures observed in the Madeira and Canary Island basalts despite a large range in 206Pb/204Pb isotopic composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.