Abstract

SummaryEmbedded control software that controls safety‐critical IoT devices requires systematic and comprehensive verification to ensure safe operation of the device. However, rigorous verification in this domain has not been feasible due to the high complexity of embedded control software, which is characterized by the frequent use of multi‐tasking, interrupts, and periodic alarms. Realizing that two major factors, scalability and exactness, are extremely difficult to achieve at the same time but critical for effective and efficient verification in this domain, this work introduces a domain‐specific compositional OS‐in‐the‐Loop (OiL) verification approach and sets out to push the boundary in achieving both factors. The suggested approach (1) models the behavior of the underlying operating system to limit the search space using the notion of controlled concurrency, (2) performs heterogeneous composition of controllers with the formal OS model to reduce verification complexity, and (3) utilizes state‐of‐the‐art verification techniques for the purpose of comprehensive verification up to a given search depth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.