Abstract
The Duke Island Complex is one of the several “Ural-Alaskan” intrusions of Cretaceous age that occur along the coast of SE Alaska. Significant quantities of magmatic Ni–Cu–PGE sulfide mineralization are locally found in the complex, primarily within olivine clinopyroxenites. Sulfide mineralization is Ni-poor, consistent with petrologic evidence which indicates that sulfide saturation was reached after extensive olivine crystallization. Olivine clinopyroxenites were intruded by magmas that produced sulfide-poor, adcumulate dunites. As part of a study to investigate the potential for Ni-rich sulfide mineralization in association with the dunites, a Re–Os and S isotope study of the dunites, as well as sulfide mineralization in the olivine clinopyroxenites, was initiated. Importantly, recent drilling in the complex identified the presence of sulfidic and carbonaceous country rocks that may have been involved in the contamination of magmas and generation of sulfide mineralization. γOs (110 Ma) values of two sulfidic country rocks are 1022 and 2011. δ34S values of the country rocks range from −2.6 to −16.1 ‰. 187Os/188Os ratios of sulfide minerals in the mineralization hosted by olivine clinopyroxenites are variable and high, with γOs (110 Ma) values between 151 and 2059. Extensive interaction with Re-rich sedimentary country rocks is indicated. In contrast, γOs (110 Ma) values of the dunites are significantly lower, ranging between 2 and 16. 187Os/188Os ratios increase with decreasing Os concentration. This inverse relation is similar to that shown by ultramafic rocks from several arc settings, as well as altered abyssal dunites and peridotites. The relation may be indicative of magma derivation from a sub-arc mantle that had experienced metasomatism via slab-derived fluids. Alternatively, the relation may be indicative of minor contamination of magma by crustal rocks with low Os concentrations but high 187Os/188Os ratios. A third alternative is that the low Os concentrations and elevated 187Os/188Os ratios denote subsolidus interaction with seawater or meteoric water. δ34S values of the dunites range between −6.4 and 6.6 ‰, and are consistent with the addition of S during fluid–rock interaction and serpentinization. The sharp contrast between the Os isotope ratios of the dunites and those of the sulfide mineralization illustrate that magmas that were spatially part of the same intrusive system may have experienced very different histories of interaction with country rocks. An important corollary is that because of the concentrations of Os and S, elevated Os isotope ratios (a function of high Re concentrations) and variable sulfur isotope ratios of sulfidic and carbonaceous country rocks, both S and Os isotope data from the olivine clinopyroxenite-hosted sulfide mineralization, are consistent with less than ∼2 % of bulk rock contamination. Even lower fractional abundance values may be indicated if the contaminant was a S–C–Os-rich fluid or partial melt derived from the sulfidic–carbonaceous metasedimentary country rocks. Despite the low degrees of contamination, the amounts of Os and S in the sulfide mineralization that may have been derived from country rocks often exceed 50 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.