Abstract

A new approach for modeling discrete cracks in two-dimensional orthotropic media by the element free Galerkin method is described. For increasing the solution accuracy, recently developed orthotropic enrichment functions used in the extended finite element method are adopted along with a sub-triangle technique for enhancing the Gauss quadrature accuracy near the crack. An appropriate scheme for selecting the support domains near a crack is employed to reduce the computational cost. In this study, mixed-mode stress intensity factors are obtained by means of the interaction integral to determine the fracture properties. Several problems are solved to illustrate the effectiveness of the proposed method and the results are compared with available results of other numerical or (semi-) analytical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call