Abstract

There is an urgency for identifying effective therapies for glioblastoma (GBM), an incurable and lethal primary malignant brain tumor. Patient-derived xenograft mouse models, in which glioma stem cells, which retain the characteristics of the original tumor, are implanted into the brain of immunocompromised mice, represent a well-suited model for studying GBM. Such models are essential for studies involving the tumor microenvironment and for testing experimental therapeutics for brain tumors. In this chapter, we detail various steps for generating an orthotopic brain tumor model in mice. We provide step-by-step guidance for enrichment and expansion of glioma stem cells for surgical specimens, surgical injection of these cells into the brain of immunocompromised mice, as well as monitoring of tumor growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.