Abstract

An important exercise in the study of rational approximants is to derive their metric, especially in relation to the corresponding quasicrystal or the underlying clusters. Kuo’s model has been the widely accepted model to calculate the metric of the decagonal approximants. Using an alternate model, the metric of the approximants and other complex structures with the icosahedral cluster are explained elsewhere. In this work a comparison is made between the two models bringing out their equivalence. Further, using the concept of average lattices, a modified model is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.