Abstract

Vaccinia virus (VACV) enters cells by a low pH endosomal route or by direct fusion with the plasma membrane. We previously found differences in entry properties of several VACV strains: entry of WR was enhanced by low pH, reduced by bafilomycin A1 and relatively unaffected by heparin, whereas entry of IHD-J, Copenhagen and Elstree were oppositely affected. Since binding and entry modes may have been selected by specific conditions of in vitro propagation, we now examined the properties of three distinct, recently isolated cowpox viruses and a monkeypox virus as well as additional VACV and cowpox virus strains. The recent isolates were more similar to WR than to other VACV strains, underscoring the biological importance of endosomal entry by orthopoxviruses. Sequence comparisons, gene deletions and gene swapping experiments indicated that viral determinants, other than or in addition to the A26 and A25 “fusion-suppressor” proteins, impact entry properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.