Abstract

BackgroundOrthophosphate recognition at allosteric binding sites is a key feature for the regulation of enzyme activity in mammalian glycogen phosphorylases. Protein residues co-ordinating orthophosphate in three binding sites distributed across the dimer interface of a non-regulated bacterial starch phosphorylase (from Corynebacterium callunae) were individually replaced by Ala to interrogate their unknown function for activity and stability of this enzyme.ResultsWhile the mutations affected neither content of pyridoxal 5'-phosphate cofactor nor specific activity in phosphorylase preparations as isolated, they disrupted (Thr28→Ala, Arg141→Ala) or decreased (Lys31→Ala, Ser174→Ala) the unusually strong protective effect of orthophosphate (10 or 100 mM) against inactivation at 45°C and subunit dissociation enforced by imidazole, as compared to wild-type enzyme. Loss of stability in the mutated phosphorylases appeared to be largely due to weakened affinity for orthophosphate binding. Binding of sulphate mimicking the crystallographically observed "non-covalent phosphorylation" of the phosphorylase at the dimer interface did not have an allosteric effect on the enzyme activity.ConclusionsThe phosphate sites at the subunit-subunit interface of C. callunae starch phosphorylase appear to be cooperatively functional in conferring extra kinetic stability to the native dimer structure of the active enzyme. The molecular strategy exploited for quaternary structure stabilization is to our knowledge novel among dimeric proteins. It can be distinguished clearly from the co-solute effect of orthophosphate on protein thermostability resulting from (relatively weak) interactions of the ligand with protein surface residues.

Highlights

  • Orthophosphate recognition at allosteric binding sites is a key feature for the regulation of enzyme activity in mammalian glycogen phosphorylases

  • Considering results of previous studies delineating the disruptive effect of individual site-directed substitutions of Arg234 and Arg242 by Ala (R234A, R242A) on orthophosphate-dependent stability of CcGlgP [15], we here selected Arg141 from the protein site (P-site) for mutational analysis

  • The CAP- and P-sites for orthophosphate binding at the subunit-subunit interface of CcGlgP appear to be cooperatively functional in conferring extra kinetic stability to the native dimer structure of the active enzyme

Read more

Summary

Results

While the mutations affected neither content of pyridoxal 5’-phosphate cofactor nor specific activity in phosphorylase preparations as isolated, they disrupted (Thr28®Ala, Arg141®Ala) or decreased (Lys31®Ala, Ser174®Ala) the unusually strong protective effect of orthophosphate (10 or 100 mM) against inactivation at 45°C and subunit dissociation enforced by imidazole, as compared to wild-type enzyme. Loss of stability in the mutated phosphorylases appeared to be largely due to weakened affinity for orthophosphate binding. Binding of sulphate mimicking the crystallographically observed “non-covalent phosphorylation” of the phosphorylase at the dimer interface did not have an allosteric effect on the enzyme activity

Conclusions
Methods
Results and Discussion
Johnson LN
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.