Abstract
The ability of bone to regenerate itself through mechanobiological responses is its dynamic property. Mechanical cues from a neighboring environment produce the structural strain to promote blood flow and bone marrow mobility that in turn aids the bone regeneration process. Occurrences of these phenomena are crucial for the success of metallic scaffolds implanted in the host bone tissue. Thus, permeability and fluid flow-induced wall shear stress (WSS) are two parameters that directly influence cell bioactivities inside a scaffold and are crucial for effective bone tissue regeneration. Given that the scaffolds shall be implanted in the body, permeability assessment was carried out using non-Newtonian fluid. In this work, the triply periodic minimal surface scaffolds with Neovius architectures were fabricated by using selective laser melting technology. The estimation of fluid flow was carried out using computational fluid dynamics (CFD) analysis with a non-Newtonian blood fluid model. Further, the structural strength of various open cell Neovius lattices was evaluated using a static compression test, and in vitro cell culture using Alamar blue assay was evaluated. Results revealed that the values of intrinsic blood flow permeability of the three-dimensional (3D)-printed open cell porous scaffold with Neovius architecture were of the same order of magnitude as those of human bone, ranging from 0.0025 × 10-9 to 0.0152 × 10-9 m2. The structural elastic modulus and compressive strength of NOCL40, NOCL50, and NOCL60 lattices range from 3.27 to 3.71 GPa and 194 to 205 MPa, respectively. All of the values are comparable to the human bone, thus making these lattices a suitable alternative for orthopedic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.