Abstract

The clk-1 gene was isolated from the long-lived mutant of Caenorhabditis elegans and was suggested to play a biological role in longevity (Ewbank et al., 1997, Science 275: 980–983). The primary structure of CLK-1 showed a significant homology to Saccharomyces cerevisiae Coq7p/Cat5p, which is required for the biosynthesis of ubiquinone and the derepression of gluconeogenic genes. In the present study, we isolated and characterized human and mouse orthologues of the COQ7/CLK-1 gene. Sequence analysis of both the human and the mouse COQ7 cDNAs showed an open reading frame composed of 217 amino acids with calculated molecular mass of 24,309 and 24,044 Da, respectively. Homology search revealed that human COQ7 showed 85% identity to mouse COQ7, 89% identity to rat COQ7, 53% identity to C. elegans CLK-1, and 37% identity to S. cerevisiae Coq7p/Cat5p. Zoo blot analysis implied that the COQ7 gene was well conserved among mammal, bird, and reptile genomes. Tissue blot analysis showed that human COQ7 is dominantly transcribed in heart and skeletal muscle. Genomic analyses revealed that the human COQ7 gene is composed of six exons spanning 11 kb of human genome as a single-copy gene. Radiation hybrid mapping assigned the COQ7 gene to human chromosome 16p12.3–p13.11.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.