Abstract

Recently, an orthogonal-state-based protocol of direct quantum communication without actual transmission of particles is proposed by Salih et al. (Phys Rev Lett 110:170502, 2013) using chained quantum Zeno effect. The counterfactual condition (claim) of Salih et al. is weakened here to the extent that transmission of particles is allowed, but transmission of the message qubits (the qubits on which the secret information is encoded) is not allowed. Remaining within this weaker (non-counterfactual) condition, an orthogonal-state-based protocol of deterministic secure quantum communication is proposed using entanglement swapping, where actual transmission of the message qubits is not required. Further, it is shown that there exists a large class of quantum states that can be used to implement the proposed protocol. The security of the proposed protocol originates from monogamy of entanglement. As the protocol can be implemented without using conjugate coding, its security is independent of non-commutativity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call