Abstract

The development of batteries and fuel cells has brought to light a need for carbon anode materials doped homogeneously with electrocatalytic metals. In particular, combinations of electrocatalysts in carbon have shown promising activity. A method to derive functional carbon materials is the pyrolysis of metallopolymers. This work describes the synthesis of a bifunctional phosphonium-based system derived from a phosphane-ene network. The olefin functionality can be leveraged in a hydrogermylation reaction to functionalize the material with Ge. Unaffected by this radical addition, the bromide counterion of the phosphonium cation can be used to subsequently incorporate a second metal in an ion-complexation reaction with CuBr2 . The characterization of the polymers and the derived ceramics are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call