Abstract
Let G be a connected semisimple Lie group with finite center, and suppose G contains a compact Cartan subgroup T. Certain irreducible unitary representations of G arise as spaces of harmonic forms associated to Dolbeault cohomology of line bundles over the complex homogeneous space G/T. In this work the unitary structures of these realizations are directly related to the orthogonality relations for the matrix coefficients of these representations. Using this connection, we exhibit unitary realizations of certain limits of discrete series representations of SU(2, 1) as spaces of harmonic forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.