Abstract
We generalize the concepts of normalized duality mapping, J-orthogonality and Birkhoff orthogonality from normed spaces to smooth countably normed spaces. We give some basic properties of J-orthogonality in smooth countably normed spaces and show a relation between J-orthogonality and metric projection on smooth uniformly convex complete countably normed spaces. Moreover, we define the J-dual cone and J-orthogonal complement on a nonempty subset S of a smooth countably normed space and prove some basic results about the J-dual cone and the J-orthogonal complement of S.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.