Abstract

We present an interesting relationship between the orthogonality catastrophe (OC) and the quantum speed limit (QSL) for a spin chain with uniform nearest neighbour couplings perturbed by an impurity spin. We thoroughly study the catastrophic QSL that specifies a bound on the evolution time between the initial and final states and in this respect, link it to the emerging OC effect. It is found that the speed of state evolution subtle but fundamental, and the bound characterized by QSL shows the same behaviours as the OC effect in the thermodynamic limit. It allows us to reveal some universal properties, in particular finite temperature effects. Significantly, the threshold of temperature and system size is clearly demonstrated for the QSL under finite temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.