Abstract

AbstractAn orthogonal spline collocation (OSC) spatial discretization is proposed for the solution of the fully coupled stream function‐vorticity formulation of the Navier–Stokes equations in two dimensions. For the time‐stepping, a three‐level leapfrog scheme is employed. This method is algebraically linear, and, at each time step, gives rise to a system of linear equations of the form arising in the OSC approximation of the biharmonic Dirichlet problem and can be solved by a fast direct method. Error estimates in the Hl–norm in space, l = 1,2, are derived for the semi‐discrete method and the fully‐discrete leapfrog scheme which is also shown to be second order accurate in time. Numerical results are presented which confirm the theoretical analysis and exhibit superconvergence phenomena, which provide superconvergent approximations to the components of the velocity. © John Wiley & Sons, Inc. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call