Abstract

The unique Steiner triple system of order 7 has a point-block incidence graph known as the Heawood graph. Motivated by questions in combinatorial matrix theory, we consider the problem of constructing a faithful orthogonal representation of this graph, i.e., an assignment of a vector in Cd to each vertex such that two vertices are adjacent precisely when assigned nonorthogonal vectors. We show that d=10 is the smallest number of dimensions in which such a representation exists, a value known as the minimum semidefinite rank of the graph, and give such a representation in 10 real dimensions. We then show how the same approach gives a lower bound on this parameter for the incidence graph of any Steiner triple system, and highlight some questions concerning the general upper bound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.