Abstract
A method for the numerical inversion of the Laplace transform of a continuous positive function f( t) is proposed. Random matrices distributed according to a Gibbs law whose energy V( x) is a function of f( t) are considered as well as random polynomials orthogonal with respect to w( x)=e − V( x) . The equation relating w( x) to the reproducing kernel and to the condensed density of the roots of the random orthogonal polynomials is exploited. Basic results from the theories of orthogonal polynomials, random matrices and random polynomials are revisited in order to provide a unified and almost self-contained context. The qualitative behavior of the solutions provided by the proposed method is illustrated by numerical examples and discussed by using logarithmic potentials with external fields that give insight into the asymptotic behavior of the condensed density when the number of data points goes to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.