Abstract

This research paper investigates the convergence properties of operators constructed from orthogonal polynomials in the context of Hilbert spaces. The study establishes norm-attainability and explores the uniform boundedness of these operators, extending the analysis to include complex-valued orthogonal polynomials. Additionally, the paper uncovers connections between operator compactness and the convergence behaviors of orthogonal polynomial operators, revealing how sequences of these operators converge weakly to both identity and zero operators. These results advance our understanding of the intricate interplay betweenalgebraic and analytical properties in Hilbert spaces, contributing to fields such as functional analysis and approximation theory. The research sheds new light on the fundamental connections underlying the behavior of operators defined by orthogonal polynomials in diverse Hilbert space settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.