Abstract
An orthogonal polynomial expansion method is presented, and illustrated with calculations, for calculating δ( E– H), the spectral density operator (SDO), the projection operator that projects out of any L 2 wavepacket the eigenstate (s) of H having energy E. If applied to an L 2 wavepacket which overlaps the interaction, it yields either scattering-type (improper) eigenstates or proper bound eigenstates. For negative energies, the exact SDO yields zero away from an eigenvalue, and yields the energy eigenstate (times a constant) when E equals an eigenvalue. The finite orthogonal polynomial expansion of the SDO, acting on an L 2 wavepacket, yields approximately zero for E not equal to an eigenvalue, and becomes nonzero in the neighborhood of an eigenvalue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.