Abstract

This paper deals with the problem of finding poles of rational functions from function values on open curves in the complex plane. For this problem, Nara and Ando recently proposed an algorithm that reduces the problem to a system of linear equations through contour integration. The main aim of this paper is to analyze and improve this algorithm by giving a new interpretation to the algorithm in terms of orthogonal polynomials. It is demonstrated that the system of linear equations is not always uniquely solvable and that this difficulty can be remedied by doubling the number of the linear equations. Moreover, to cope with discretization errors caused by numerical integration, we introduce new polynomials similar, in spirit, to discrete orthogonal polynomials, which yield an algorithm free from discretization errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.